QMA-complete problems for stoquastic Hamiltonians and Markov matrices

Stephen Jordan
Peter Love

[arXiv:0905.4755]
Definition: stoquastic Hamiltonian
a Hermitian matrix in which all off-diagonal entries are non-positive

- In physics not all bases are created equal!
- Basis of unentangled states is easy to prepare and measure
- We use σ_z basis but results hold for any basis of tensor product states
Some stoquastic Hamiltonians:
- ferromagnetic Heisenberg model
- transverse Ising model
- adiabatic optimization algorithms
- Josephson junction flux qubits
Problem: LOCAL HAMILTONIAN
Input: Hamiltonian H on n qubits
parameters $a < b$ with $b-a > 1/poly(n)$
Output: YES if ground energy is $< a$
NO if ground energy is $> b$
Promise: ground energy not between a and b
k-Local: each term acts on at most k qubits
- **NP**: proof (bit string) is efficiently verifiable on classical computer
- **MA**: proof (bit string) is efficiently verifiable on randomized classical computer, $p(\text{error})$ small
- **QMA**: proof (quantum state) is efficiently verifiable on quantum computer

k-LOCAL HAMILTONIAN is QMA-complete for any $k > 1$
• Stoquastic LOCAL HAMILTONIAN \in AM
 – probably not QMA-complete!
• Stoquastic adiabatic computation \in $\mathsf{BPP}_{\text{path}}$
 – probably not universal!

[Bravyi, et al.]

However:

• Approximating highest energy of stoquastic Hamiltonian is QMA-complete
• Adiabatic computation in highest eigenstate of stoquastic Hamiltonian is universal
Actually, we prove QMA-completeness and adiabatic universality for a more restricted class of Hamiltonians:

Definition: stochastic Hamiltonian
- symmetric matrix
- all entries real and nonnegative
- sum of entries in any row (or column) is 1
- also called Markov

If H is stochastic, $-H$ is stoquastic
Intuition

• By Perron-Frobenius: highest eigenvector of stochastic matrix is probability distribution
 – lowest eigenvector of stoquastic Hamiltonian is a probability distribution
 – QMA \rightarrow AM

• Other eigenstates have amplitudes of both signs
Stochastic LOCAL HAMILTONIAN is QMA-complete

Proof: Begin by using result of Biamonte & Love:

For a Hamiltonian of the form:

\[
H_{XZ} = \sum_i d_i X_i + \sum_i h_i Z_i + \sum_{i,j} K_{ij} X_i X_j + \sum_{i,j} J_{ij} Z_i Z_j
\]

LOCAL HAMILTONIAN is QMA-complete
Proof strategy:

- **given** H_{XZ} construct a stochastic Hamiltonian \bar{H} whose spectrum relates to that of H_{XZ} in a known way

- By calculating ground energy of \bar{H} we learn ground energy of H_{XZ}

- H_{XZ} QMA-hard \implies \bar{H} QMA-hard
Main trick:

- We want to get rid of negative matrix elements
- So, we represent the group \(\mathbb{Z}_2 = \{1, -1\} \) by \[\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\} \]
- H_{XZ} is of the form:

$$H_{XZ} = \sum_{k} \alpha_k S_k$$

where each coefficient α_k is positive and each S_k is one of $\pm X, \pm Z, \pm X_i X_j, \pm Z_i Z_j$

- All entries in S_k are $+1$, -1, or 0

- Make the replacements

$$1 \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad -1 \rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 0 \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Call the result \tilde{S}_k
• By the replacement:

\[1 \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad -1 \rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 0 \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. \]

each \(\tilde{S}_k \) is a permutation matrix

• Hence

\[H_{XZ} = \sum_k \alpha_k S_k \quad \rightarrow \quad \tilde{H}_{XZ} = \frac{1}{\sum k \alpha_k} \sum_k \alpha_k \tilde{S}_k \]

yields stochastic Hamiltonian
\[H_{XZ} = \sum_{k} \alpha_k \mathcal{S}_k \text{ acts on } n \text{ qubits} \]

\[\tilde{H}_{XZ} = \frac{1}{\sum_k \alpha_k} \sum_k \alpha_k \tilde{\mathcal{S}}_k \text{ acts on } n+1 \text{ qubits} \]

The 2x2 blocks from the replacement:

\[
1 \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad -1 \rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 0 \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.
\]

act on the extra qubit
• If the ancilla is \(\frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) \) then the blocks act like the original scalars.

• If the ancilla is \(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \) then the blocks replacing +1 and -1 both act like +1.

\[
1 \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad -1 \rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 0 \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.
\]
Thus:

\[\tilde{H}_{XZ} = \frac{1}{\sum_k \alpha_k} \left(H_{XZ} \otimes \langle - \rangle \langle - \rangle + H'_{XZ} \otimes \langle + \rangle \langle + \rangle \right) \]

where \(H'_{XZ} \) is the entrywise absolute value of \(H_{XZ} \).

Next we penalize the \(|+\rangle \) subspace

\[\bar{H} = (1 - p)X_{n+1} + p\tilde{H}_{XZ} \]

QED
- How about highest eigenvalue of stochastic Hamiltonian?
- Always 1, can't be QMA-complete.
- Proof fails at penalty step:

\[\tilde{H} = (1 - p)X_{n+1} + p\tilde{H}_{XZ} \]

- Proof fails for ground energy of stoquastic H
• Besides application to stoquastic Hamiltons:
 - we have QMA-completeness for a “classical” problem
 - exponentially large stochastic matrices arise in Markov chains
 - natural tensor product structure:
 \[p_{t+1} = M p_t \]
 \[q_{t+1} = N q_t \]
 joint probability evolves with \(M \otimes N \)
Adiabatic Quantum Computing

Hamiltonian: $H(0) \quad \longrightarrow \quad \text{smoothly} \quad \longrightarrow \quad H(T)$

ground state: $\lvert 000... \rangle \quad \longrightarrow \quad \lvert \text{answer} \rangle$

If $\left| \frac{dH}{dt} \right|$ is sufficiently small compared to the eigenvalue gap then the system will track the ground state.
Adiabatic Quantum Computing

- Originally proposed by Farhi et al. as a method for solving satisfiability problems (e.g. 3-SAT)

- Can be simulated by quantum circuits using standard Trotterization

- Can simulate quantum circuits [Aharonov et al.]
• Adiabatic quantum computation with 5-local Hamiltonians is universal \cite{Aharonov et al}
• 3-local is universal \cite{Kempe, Kitaev, Regev}
• XZ is universal \cite{Biamonte & Love}
• Stoquastic is universal (in excited states)
QMA-completeness of LOCAL-HAMILTONIAN

Universality of adiabatic quantum computation

- 5-local \cite{Aharonov et al, Kitaev}
- 3-local \cite{Kempe & Regev}
- 2-local \cite{Kempe Kitaev & Regev}
- XZ \cite{Biamonte & Love}
- stoquastic

why?
• **Proof techniques:**

 – **Quantum circuit** U:
 \[
 |\psi_0\rangle \rightarrow U_1|\psi_1\rangle \rightarrow U_2U_1|\psi_0\rangle \rightarrow \ldots
 \]

 – **Construct** H_U **with ground state**:
 \[
 \frac{1}{\sqrt{n+1}} (|\psi_0\rangle |0\rangle + U_1|\psi_0\rangle |1\rangle + U_2U_1|\psi_0\rangle + \ldots)
 \]

 – **LOCAL HAMILTONIAN**: add energy penalty against “NO” outcomes

 – **adiabatic computation**: find $H(s)$ such that $H(0)$ has a simple ground state, $H(1) = H_U$, and gap is polynomial
Adiabatic Quantum Computation with 3-local Stochastic Hamiltonians is Universal

Proof sketch:

• Adiabatic QC is universal with a Hamiltonian of the form $H_{XZ}(t)$ [Biamonte, Love]
• Apply our construction to each instantaneous Hamiltonian $H_{XZ}(t) \rightarrow \bar{H}(t)$
• By construction $\bar{H}_{XZ}(1)$ has the desired ground state
• $\bar{H}(t)$ is smoothly varying
• gap is smaller by factor of $\sum_k \alpha_k$ QED
Adiabatic Quantum Computation with 3-local \textbf{Stoquastic} Hamiltonians is Universal

- Proof #1: use $-\bar{H}(t)$

- We can do better:
 - only do this:
 \[
 1 \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad -1 \rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad 0 \rightarrow \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.
 \]
 - no rescaling by $\sum_k \alpha_k$ and no penalty against $|+\rangle$
 - universality in $|_\rangle$ subspace
 - no overhead
Gadgets

to simulate:

\[H^{\text{comp}} = \sum_{s=1}^{r} c_s H_s \]

\[H_s = \sigma_{s,1} \sigma_{s,2} \cdots \sigma_{s,k} \]

\[\sigma_{s,j} = \hat{n}_{s,j} \cdot \vec{\sigma}_{s,j} \]

use:

\[H^{\text{gad}} = \sum_{s=1}^{r} H_s^{\text{anc}} + \lambda \sum_{s=1}^{r} \sqrt{c_s} V_s \]

\[H_s^{\text{anc}} = \sum_{1 \leq i < j \leq k} \frac{1}{2} (I - Z_{s,i} Z_{s,j}) \]

\[V_s = \sum_{j=1}^{k} \sigma_{s,j} \otimes X_{s,j} \]
Applications & Open Problems

• Antiapplication: can't efficiently compute highest energy of stoquastic Hamiltonians
 - other excited states?
• Adiabatic computation with Josephson junctions
 - 2-local?
 - protection against decay into lower energies?
• Complexity theory
 - QMA-complete problem regarding Markov chains
 - QMA-completeness of mixing time?
Applications & Open Problems

● Antiapplication: can't efficiently compute highest energy of stochastic Hamiltonians
 - other excited states?
● Adiabatic computation with Josephson junctions
 - 2-local?
 - protection against decay into lower energies?
● Complexity theory
 - QMA-complete problem regarding Markov chains
 - QMA-completeness of mixing time?

Thank You